Hairpin and parallel quartet structures for telomeric sequences
نویسندگان
چکیده
منابع مشابه
Formation of novel hairpin structures by telomeric C-strand oligonucleotides.
Telomeres are specialized structures at the ends of chromosomes that are required for long term chromosome stability and replication of the chromosomal terminus. Telomeric DNA consists of simple repetitive sequences with one strand G-rich relative to the other, C-rich, strand. Evolutionary conservation of this feature of telomeric repeat sequences suggests that they have specific structural cha...
متن کاملRelation Between RNA Sequences, Structures, and Shapes via Variation Networks
Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...
متن کاملHairpin Structures in DNA Words
We formalize the notion of a DNA hairpin secondary structure, examining its mathematical properties. Two related secondary structures are also investigated, taking into the account imperfect bonds (bulges, mismatches) and multiple hairpins. We characterize maximal sets of hairpin-forming DNA sequences, as well as hairpin-free ones. We study their algebraic properties and their computational com...
متن کاملAutoDimer: a screening tool for primer-dimer and hairpin structures.
The ability to select short DNA oligonucleotide sequences capable of binding solely to their intended target is of great importance in developing nucleic acid based detection technologies. Applications such as multiplex PCR rely on primers binding to unique regions in a genome. Competing side reactions with other primer pairs or template DNA decrease PCR efficiency: Freely available primer desi...
متن کاملLigand selectivity in stabilising tandem parallel folded G-quadruplex motifs in human telomeric DNA sequences.
Biophysical studies of ligand interactions with three human telomeric repeat sequences (d(AGGG(TTAGGG)n, n = 3, 7 and 11)) show that an oxazole-based 'click' ligand, which induces parallel folded quadruplexes, preferentially stabilises longer telomeric repeats providing evidence for selectivity in binding at the interface between tandem quadruplex motifs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 1992
ISSN: 0305-1048,1362-4962
DOI: 10.1093/nar/20.15.4061